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ABSTRACT 
 
 
One of the open issues on the effects of surface geology regards the estimation of site response when limited resources are available. 
In that restrictive context, one solution is to use soil characteristics as proxy. Despite its extensive use, the most common proxy, Vs30, 
is presently criticized because it cannot carry alone the main physics of site response. We propose here a statistical investigation of the 
capabilities of another proxy, the Rayleigh-wave dispersion curve, DC. When considered over a broad enough frequency band, it can 
provide deeper information missing in the single Vs30 parameter.  
A set of shear-wave velocity profiles measured for more than 600 Japanese KiK-net stations is used to compute theoretical dispersion 
curves (DC) and theoretical SH transfer functions (SH), while instrumental surface/downhole spectral ratios were calculated in a 
previous work (Cadet et al., 2011a). Canonical correlation techniques are applied to this large data set to analyze the relationship 
between DC and theoretical or empirical site responses. The results indicate very encouraging qualitative statistical relationships 
between DC and site amplification for numerically derived SH transfer functions, showing significant canonical couples with 
correlations up to 0.95. Results for instrumental surface/downhole transfer functions correspond to lower correlations (up to 0.73) but 
still allow the development of quantitative relationships. 
 
 
INTRODUCTION 
 
 
Different proxies are used to define the site effect for site with few information. The most common one is the time-averaged shear-
wave velocity over the first 30 meters, Vs30. It is widely used in code provisions (in Europe with the Eurocode EC8, and in the USA 
with the National Earthquake Hazards Reduction Program NEHRP) and in ground motion prediction equation GMPE (Power et al. 
2008). However its capability of carrying site effects information is drastically criticized (Mucciarelli and Gallipoli 2006; Castellaro et 
al. 2008; Lee and Trifunac 2010). Indeed it is a very restrictive parameter that does not carry any information about frequency content 
and concerns only a shallow depth.  
Nowadays, other proxies are proposed. For example, in some GMPEs the combination between Vs30 and the depth to the bedrock is 
introduced for site effect consideration (e.g. Field 2000). Cadet et al. (2011a) proposed a site amplification prediction equation (SAPE) 
using the combination of Vs30 and the fundamental resonance frequency f0. In these recent propositions Vs30 is still needed. 
The geophysical campaign to get Vs30 might be either with active source (usually not easy to generate especially at large distances) or 
with passive source. In this last case, the ambient seismic noise is recorded and analyzed to compute the dispersion curve, DC 
(velocity of the surface waves according to their frequency). Then, this dispersion curve is inverted to obtain shear-wave velocity 
profiles, Vs(z). The inversion step is a research topic by itself (in the noise analysis context: Wathelet 2008; Wathelet et al. 2004). 
Some efforts have been done to provide a step-by-step inversion procedure (Renalier et al. 2009, Savvaidis et al. 2009). However 
despite these guidelines, the process is time-consuming and might be user dependent (Cornou et al. 2006). Having, in one hand, the 
difficulty of the inversion step and, in the other hand, the need of a site effect proxy carrying frequency information, we decided to test 
the capability of the DC to estimate the site effect. Thus the goal of this work is to investigate in a statistical way the ability of the 
dispersion curve to capture horizontal site response phenomena. Moreover, the dispersion curve can be defined in different frequency 
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band width depending on the survey. Large array of sensors will allow to characterize low frequencies whereas small arrays aperture 
will characterize high frequencies. The desired frequency band width is constrained by the survey cost and the natural filter that 
usually does not allow to describe the dispersion curve below the resonance frequency of the site (Scherbaum et al. 2003). Thus the 
fundamental resonance frequency is a reference limit of the frequency band described by the dispersion curve.  
We applied the well-known multivariate statistical analyses techniques, namely, the canonical correlation, as already used by 
Theodulidis et al. (2008), Cara et al. (2008) and De Rubeis et al. (this issue) to quantify the correlation between physical parameters, 
called proxies, and numerical site effect estimation. Different canonical correlation tests were driven to identify the more adapted 
proxy for a proper site effect estimation. The proxies tested were the classical Vs30 combined with the fundamental resonance 
frequency, compared to different frequency bands of the dispersion curve.  
 
 
DATA AND METHODS 
 
 
In this paper the dispersion curves and numerical transfer functions are computed for the statistical analysis. Both computations are 
detailed in this chapter. A comparison with empirical data is also carried out. The main steps of the empirical spectral ratios estimation 
are described. Then the canonical correlation technique is briefly detailed. 
The velocity profiles and the empirical data are extracted from the Japanese KiK-Net accelerometric network 
(http://www.kik.bosai.go.jp). This network is devoted to combine outcrop and down-hole measurements (up to 3500m deep, with a 
mean depth around 222 m). Moreover, each of the 689 stations has been characterized with P- and S-waves velocity profiles from 
down-hole measurements (Kinoshita, 1998; Aoi et al., 2000; Fujiwara et al., 2004; Pousse, 2005). This network constitutes an 
abundant source of information and thus has been the topic of numerous studies on the complete database (among others: Oth et al., 
2011; Cadet et al., 2011a). In this study, a pre-selected set of 622 stations has been used (Pousse, 2005). 
 
 
Dispersion Curve computation 
 
The theoretical DC computation is based on the eigen values problem described by Thomson (1950) and Haskell (1953), then 
modified by Herrmann (1994). For the Love and Rayleigh surface waves, the motion equation can be reduced to a first order 
differential equations system. In the case of tabular layers (one dimensional, 1D, case with horizontal and isotropic layers), this 
problem can be solved with the propagation matrix method (Aki and Richards, 2002), as in the GEOPSY software 
(http://www.geopsy.org/) used for the DC computation. The input parameters are defined at each depth: P-waves velocity, Vp, S-
waves velocity, Vs, and the density with a minor influence on the DC according to Whatelet (2004). The DCs are computed between 
0.1 and 100 Hz for hundred frequency samplings in logarithmic scale. Reminding that the natural filter usually does not allow to 
describe the DC below the resonance frequency of the site, the fundamental resonance frequency might be a limit of the frequency 
band described by the dispersion curve. Considering this characteristic, it seems pertinent to work in a dimensionless frequency space, 
that is to say normalized the frequencies by the fundamental resonance frequency, f0. This frequency has been automatically selected 
on the numerical transfer function. In that case, the “ad” suffix is used. For the statistical analysis the DCs are resampled with only six 
samplings from 0.3*f0 to 6*f0 in dimensionless frequency. This is done both for purpose of simplicity and also because each sample 
has to be independent.  
 
 
Theoretical transfer function computation 
 
The SH-waves transfer functions (SH) are performed for each velocity profiles. SH is computed numerically with a 1D reflectivity 
model (Kennett, 1974) reproducing the response of horizontally stratified layers excited by a vertically incident SH plane wave. The 
original software written by JC Gariel and P.Y. Bard, was used previously in a large number of investigations (Bard and Gariel, 1986; 
Theodulidis and Bard, 1995; among others). The velocity profiles have been exploited for both the DC computation and the SH 
computation with the velocity of the bedrock taken as the last measured velocity of the profile. 
In addition to the shear-wave velocity profile derived from downhole measurements, densities and damping values are also needed to 
compute the site response. The density is assumed to increase with increasing S-wave velocity and their values was set as follows: 
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The material damping is introduced through a quality factor for shear waves, assumed to be independent of frequency: Qs=Vs/10, with 
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Vs in m/s. This assumption provides Q values close to the one chosen by Raptakis et al. (2000), Chavez-Garcia et al. (2002) and 
Marrara and Suhadolc (2001) for 1D simulations. The SHs are computed for 2048 frequency samples regularly spaced from 0 to 25 
Hz. They were resampled in dimensionless frequency space with six samplings for the statistical analysis as mentioned for the DC. 
The SH and DC are both completely defined over the dimensionless frequency band from 0.3*f0 to 6*f0 for 447 sites. 
The SH is computed with respect to an outcropping rock site having the velocity of the bottom layer of the site under consideration. 
To be consistent with the empirical data processing, a Konno-Ohmachi (Konno and Ohmachi 1998) smoothing was applied to the SH. 
From Cadet et al. (2011b) numerical data need a stronger smoothing and the selected smoothing parameter in the Konno-Ohmachi 
procedure is here chosen as b=10.  
 
 
Empirical transfer functions (Fourier horizontal) 
 
Using the KiK-Net data, borehole spectral ratios (BSR) are derived using the outcrop over the down-hole recordings of each site 
(details can be found in Cadet et al., 2011b). However, it is much more common to reefer to an outcrop rock site than to a deep rock 
site, thus Cadet et al. (2011b) proposed a correction procedure. This procedure corrects from the depth effects (effects due to the depth 
of the down-hole sensor that gives a higher amplification than with an outcrop reference) and normalizes toward a standard reference 
rock site (Cadet et al. 2010). The corrected normalized ratios, BSRcn, were used as empirical transfer functions for canonical 
correlations. In that case, the database is reduced to 207 sites for which the BSRcn is defined in the dimensionless frequency from 0.3 
to 6.1. 
 
 
Canonical correlation 
 
This technique is applied in order to compare the SH (variables to explain) to the explicative variables, either the DC or Vs30, in the 
dimensionless frequency space that implicitly includes f0 information. 
From Davis (2002), the canonical correlation analysis underlines the relationships between an explicative data group X and a group of 
data to explain Y. This analysis optimizes the linear combinations of the variables X, so called Xcan and of the variables Y, called Ycan, 
in order to get the bets correlation value between Xcan and Ycan. Those linear combinations are called canonical variables and are 
defined by their weights: 
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With ai the weight associated to Xi and nx the number of variables X. Similarly the canonical variable Ycan is defined:             
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With bj the weight associated to Yj and ny the number of variables Y. 
The vectors A=(a1,…,anx) and B=(b1,..bny) are the weights, respectively, of the explicative variables and of the variable to explain. The 
variables Xcan and Ycan are linked by a linear relation:      
 

βα +×= cancan XY        (3) 

 
with α and β real scalar. The linear relation is represented here in the (Xcan, Ycan) plane (fig. 1, first line, 2nd, 4th and 6th graphs). 
To understand the relations between X and Y, correlations between the original variables Xi and the canonical variables Xcan (or 
between  Yj and Ycan) are computed. The result of such correlations are presented for each variable in a bar plot (fig. 1, first line, 1st, 
3rd, and 5th graphs for the Y and Ycan correlation and 2nd line for the X and Xcan correlation). For example, the variable Xi with the 
highest correlation is the one that better explain the variables Y. To illustrate this case, referring to fig. 1.B, we see that X variable n°3 
is highly correlated with its Xcan and it decisively contribute to the canonical significant correlation with Ycan. Ycan is well 
represented by variable Y n°1. Highly correlated original variables are the source for correct interpretation of canonical couples Xcan 
and Ycan.  
The relationships between X and Y depend on n combinations of the weights A and B, with n the smallest value between nx and ny. 
The first possibility is called the first canonical couple and has the highest correlation value. For example the first, second and third 
canonical couples are represented respectively in fig. 1.A, 1.B and 1.C.  
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In this study the X variables are either the DC samples or the Vs30 and Y variables are the SH samples.  
Two main hypotheses have to be respected for the canonical correlation analysis: (i) a normal distribution of each variable and (ii) no 
or few outliers. These requirements have to be fulfilled in order to avoid to be influenced by a tail or an asymmetric shape.  
To be closed to the normal distribution (first requirement) a Box Cox transform (Chen et al. 2002) has been used in both final X and Y 
families. The Box-Cox transformation of a set of variables y is basically defined by a coefficient λ such as:   
 

⎪⎩

⎪
⎨
⎧

=

≠
−

=
0),log(

0,1
)(

λ

λ
λ

λ

ify

ify
yBoxCox        (4) 

 
λ is chosen such as BoxCox(y) is the closest to a normal distribution. If λ equals to zero then the transformation is equivalent to a 
natural logarithm transformation. A high value of λ will traduce a variable distribution far from a normal distribution, thus these 
variables have to be either rejected or taken into account carefully. For all the following studies the Box-Cox transformation is used 
for all parameters. The four families (SH, DC, Vs30 and f0) used here are BoxCox transformed with λ values in the table 1 for each 
sample of the SH and DC, λ=0.048 for Vs30 and λ=0.373 for f0.  
 

Table 1.  λ values of the Box Cox transformed for SH, DC and BSRcn in the dimensionless frequency space 
 

frequency 0.3 0.55 1 1.8 3.3 6.1 
SH ad -1.34 -1.04 0.36 -0.35 -0.09 0.29 
DC ad 0.67 0.65 0.55 -0.20 -0.19 -0.28 

BSRcn ad -0.97 -0.58 -0.93 -0.12 0.07 0.26 
 
To avoid the presence of outliers (second requirement), we define them as sites having more than 10% of its variables (in log10) that 
are smaller or higher than the mean of the considered variable +/- two standard deviations. The outliers determination is computed 
separately on both the X and Y datasets. The outliers of both datasets are disregarded to build-up the final X and Y families on which 
statistical analysis has been derived. 
 
 
DATA PROCESSING 
 
 
The goals are (i) to show that it is possible to evaluate the site effect represented by the transfer function (SH theoretical or empirical) 
by using the dispersion curve (DC) as a proxy; and (ii) to compare this DC proxy with the classical Vs30 proxy. Indeed, one of the 
main practical issues is to choose easily available proxies that are the most relevant for site effect estimation.  
To fulfil these goals, we studied the correlation between the transfer functions SH and the dispersion curve DC defined in different 
frequency ranges. We then correlated the SH with the Vs30 parameter to compare its capability to approximate the site transfer 
function. 
Most of the analyses have been carried out using SH and DC in the dimensionless frequency space, that is by dividing the frequency 
range by the resonance frequency f0 evaluated at the site. In this way we are able to propose site effect proxies which are site specific 
because it depends on the fundamental resonance frequency of the site. Moreover it is more adapted to give advices on the DC 
frequency band in dimensionless space.  Notice that working in dimensionless frequency implies that f0 is a part of the proxies.  
 
 
Theoretical SH versus DC (0.3* f0 to 6* f0): ideal case  
 
The 6 samplings of the DC from 0.3 to 6 in dimensionless frequency space are used as explicative parameters of the theoretical 
transfer function SH (fig. 1). The first 3 canonical couples of the canonical correlation have a correlation of 0.97, 0.86 and 0.78 
respectively. The associated probabilities are less than 1/10000, this very low value reinforces the idea that the correlation, behind r 
values, have good significant values.  
In the first couple (fig. 1.A), the DC samples below f0 (black bar plot at the bottom, fig. 1.A) are correlated mainly with the SH around 
f0 (grey bar plot at the top, fig. 1.A). This relation is physically understandable: the high DC velocity at low frequency is linked to a 
hard bedrock at depth, thus probably to an elevated velocity contrast value; in that case we expect a high SH amplification. On the 
other hand, the last 3 samples of the DC (black bar plot at the bottom, fig. 1.A) are anti-correlated with SH around f0 (grey bar plot at 
the top, fig. 1.A):  when the high frequency DC velocity is high, it is most probably the case of a stiff superficial soil that may 
correspond to a relatively small amplification in the SH.  
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Fig. 1. Canonical correlation between the explicative variables DC from 0.3*f0 to 6*f0 and the variables to explain SH from 0.3*f0 to 
6*f0 

 
The second and third canonical couples (fig. 1.B and C) explain better the other frequency samples of the SH but the physical 
explanation is not as obvious as for the first canonical couple. In the 2nd canonical couple the all DC range, with particular relevance of 
1*f0, is anti-correlated with the SH at 0.3*f0 and correlated with SH at 6*f0. Finally the 3rd canonical couple underlines a correlation 
between the DC from 1.8*f0 to 3.3*f0 with the SH at 1.8*f0. Both relations from the 2nd and 3rd canonical couples are difficult to 
explain with a simple physics. 
Those results are promising because they show that the DC can explain up to 97% of the SH. However, it is difficult to obtain the DC 
from 0.3*f0 to 6*f0 in a real practical case. It is then useful to estimate how much we loose when using either less samplings of the DC 
or the Vs30 parameter. 
 
 
Theoretical SH versus DC defined only over few samples: restrictive case 
 
When the DC is reduced to the high frequency samples, it is still providing valuable information on SH. Indeed with a DC reduced to 
frequencies greater than 1*f0, the correlation of the first canonical couple is very high (0.96). Fig. 2A shows that the DC value around 
f0 is correlated with the SH value around f0.: in case of high bedrock velocity, the DC velocity at low frequency will be high and the 
large velocity contrast might imply a large amplification on SH. A more restrictive DC dimensionless frequency band (f>1.8*f0 or 
f>3.3*f0) is still explaining the SH with 85% of correlation (fig. 2.B and C). Both frequency band restrictions are equivalent in terms 
of correlation values and explanation of the inter-relationships. This equivalence is crucial because it indicates that it is not necessary 
to put our computational and experimental efforts towards the low frequencies, usually more difficult to retrieve in a field experiment. 
These two last canonical correlations show that the DC around 3.3*f0 is anti-correlated with the SH around 1*f0: high DC velocity at 
relatively high frequency (around 3.3*f0) may indicate a rock site, thus the SH amplification should be small. The correlation between 
the DC around 3.3*f0 and the SH around 6*f0 is less important than the first observation and there is not an obvious physical 
explanation of it. 
 
 

 
 

Fig. 2. Canonical correlation between DC from (a)1*f0 to 6*f0; (b)1.8*f0 to 6*f0; (c) 3.3*f0 to 6*f0 and SH from 0.3*f0 to 6*f0 
 
Figure 3 represents the correlation value of canonical correlations between DC and SH, for different DC frequency samplings 
selection. The frequency sampling stays the same (defined in table 1), only the samples selection is changing. The samples selection of 
the DC starts from α*f0 (abscise of fig. 3) and finishes after one, two or three samples (blue, red and black curves in fig. 3). The 
ordinate of fig. 3 shows the correlation value using only one, two or three samples of the DC. For example, the round red point at 1*f0 
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represents the correlation value (about 0.93) of the DC defined from 1*f0 to 1.8*f0 with SH defined from 0.3*f0 to 6.1*f0. 
We can see that, with either one, two or three samples, the DC will better explain the site effect if the DC frequency selection starts 
from 1*f0 (correlation value around 0.96 with 3 samples, 0.93 with 2 samples and 0.84 with one sample). Thus there is no need to go 
below the fundamental resonance frequency as the correlation is lower when using low frequency content.  
The 2-samples DC definition provides correlation values very close to the 3-samples DC definition (red curve versus black curve). As 
said in the previous paragraph, we get 0.85 of correlation using DC from 3.3*f0 to 6.1*f0 as for the DC defined over 3 samples from 
1.8*f0 to 6.1*f0. Thus there is no need to extend to 1.8*f0 in that case, two samples are enough. 
Finally, using only one sample, the best compromise between correlation value and facility to get the DC in a field work (that is to say 
above f0) is to define the DC around 3.3*f0 (correlation of 0.82). In the restrictive situation where DC cannot be defined below 1*f0 
(included), the difference between one, two and three samples is not so huge (fig. 3). 
This study allows us to advice for the DC proxy even if a narrow frequency band is described. 
 

 
 

Fig. 3. Evolution of the correlation from the canonical correlation between DC described on few samples (one, two or three) and SH 
from 0.3*f0 to 6*f0 

 
 
RESULTS AND DISCUSSION 
 
 
Is DC a good proxy for empirical data? 
 
In order to validate our proposition to use DC as a proxy, canonical correlations have been realized between the DC and the 207 
empirical transfer functions (BSRcn) in the dimensionless frequency space. Empirical data should carry more variability 
(measurements accuracy, 2D-3D effects …) than SH that is a 1D model. As expected, the correlations values are relatively lower than 
using the numerical models. With restrictive frequency samplings of the DC (f> 1*f0, f>1.8*f0 and f>3.3*f0) the correlations are 0.69, 
0.64 and 0.64, respectively. We focus on the results for the shortest frequency range (f>3.3*f0), because it was demonstrated in the 
previous section that the DC from 3.3*f0 to 6.1*f0 is able to explain the theoretical SH around 1*f0 with a correlation of 0.85. In the 
case of empirical transfer function we find similar results (Fig. 4) but the correlation value decrease to 0.64. The physical explanations 
are similar. 
Figure 5 is equivalent to Fig. 3 but using empirical data. From Fig. 5, it seems useless to use the DC defined only over one sample at 
1.8*f0 as the correlation drops significantly. This effect is also seen when using two samples: from 1.8 to 3.3 the correlation is not 
better than using DC from 3.3 to 6.1. The best one sample DC proxy (when information is not available below f0) is at 3.3*f0 
(correlation 0.63) as with the numerical transfer functions. 
On the contrary of the numerical transfer function, the low DC frequency at 0.55*f0 explains in a better way the BSRcn than at 1*f0 
(fig. 5 compared to fig. 3).  This observation underlines that there is different behavior between the numerical and the empirical 
transfer functions especially at frequency below f0. 
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Fig. 4.  Canonical correlation between DC from 3.3*f0 to 6*f0 and SH (left) or BSRcn (right) from 0.3*f0 to 6*f0 
 

 
 

Fig. 5. Evolution of the correlation from the canonical correlation between DC described on few samples and BSRcn from 0.3*f0 to 
6*f0 

 
Is DC proxy better than Vs30 proxy? 
 
In order to emphasis the proxy quality of the DC a comparison is conducted when using Vs30 alone with SH.  Here the correlation is 
realized in real frequency domain in order not to introduce f0 information (fig. 6). As all previous computations were performed in the 
dimensionless frequency, here, for purpose of comparison, canonical correlation between DC and the BSRcn is driven in the real 
frequency domain (fig. 7). 
The correlation using Vs30 has a value of 0.69. It focuses on the middle frequencies from about 1 Hz to 3 Hz. The DC proxy from 3.3 
Hz to 6.1 Hz in real frequency domain provides a better correlation of 0.82. This correlation underlines mainly a frequency band from 
0.5 Hz to 2Hz (fig. 7), slightly lower than the underlined frequency band with Vs30. Using only two frequency samples of the DC, the 
DC proxy is better than the Vs30 proxy. 

 

 
 

Fig. 6. Canonical correlation between Vs30 and BSRcn from 0.3 Hz to 6.1 Hz 
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Fig. 7. Canonical correlation between DC from 3.3 Hz to 6.1 Hz and BSRcn from 0.3 Hz to 6.1 Hz 
 
 
CONCLUSION 
 
 
This study clearly showed that the dispersion curve carries a high potential for site effect estimation. Indeed, the DC is able to explain 
a large part of the transfer function, mainly around f0 for both numerical and theoretical site effect estimations. Moreover, even if the 
DC is defined over a very narrow frequency band, its proxy capability for numerical transfer function is still high with a correlation 
value of 0.85 for a theoretical dispersion curve defined from 3.3*f0 to 6*f0 and even 0.82 with DC defined only around 3.3*f0. For the 
same frequency sampling selection, in the case of empirical transfer function, the correlation drops down to 0.64 and 0.63 
respectively. This decrease might be link to the fact that empirical data also carry 2D and 3D effects together with non-linear effects, 
even though the selected data are not prone to such behavior. These complex effects are not included in the DC that comes from 
numerical modeling. For a practical utilization, we might advice to at least derive the DC around 3.3*f0 or better from 3.3*f0 to 6*f0. 
Indeed this “low cost” characterization allows a canonical correlation of 0.85 with the SH defined from 0.3*f0 to 6*f0 and 0.64 with 
empirical spectral ratios defined from 0.3*f0 to 6*f0. 
Finally, this proxy seams to be much more appropriate than the Vs30 proxy. This has been proved using empirical transfer functions: 
the DC defined from 3.3 Hz to 6.1 Hz has a canonical correlation of 0.82 with the empirical transfer function in real frequency space, 
whereas the Vs30 has only 0.69 of correlation. Moreover the time of data analysis needed to obtain Vs30 is much longer than for the 
DC estimation, thus it is of great interest to develop relationships using the DC information. 
Finally, all canonical correlations of this study have good significant values because they are always associated with a probability less 
than 1/10000. This enhances the capability of the tested proxies. 
As done by De Rubeis et al (2011) the next step of this work will be to develop a quantitative analysis in order to propose site effect 
estimation based on the dispersion curve. 
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